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We demonstrate how the structure that arises in inverse and optimal design problems can be used to
aid in the efficient application of automatic differentiation ideas. We discuss the program structure
of generic inverse problems and then illustrate, with two examples (one example involves the heat
equation, the other involves wave propagation) how structure can be used in combination with auto-
matic differentiation. Finally, we report numerical results and describe the ADMIT-2 software package
which enables efficient derivative computation of structured problems.

1. Introduction

Effective use of automatic differentiation (AD) software for realistic large-scale
problems is often not “automatic.” Indeed, performance gains of several orders of
magnitude can sometimes be achieved by using AD in a selective manner (as op-
posed to straightforward use of AD software). In particular, large-scale problems
typically exhibit structure: for AD to be used efficiently (or even feasibly) it is
crucial that the dominant problem structure be understood and exploited. This is
certainly true for optimal design (and inverse) problems. Direct application of AD
can be unbearably expensive on such problems due to their density and complex-
ity. On the other hand, if the use of AD is integrated with the problem structure
then there is significant potential for effective calculation of derivatives using AD
software.

A large number of engineering design problems are posed as inverse problems.
An inverse problem, in discretized form, can be described as follows.
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We begin with a forward computation: Given the value of parameters x = ¥ €
A", solve for the state y € R™,

Fx,y)=0 1

where function F is typically nonlinear and is assumed to be differentiable. Often
F represents a finite difference method for the approximate solution of a differen-
tial equation. In that case, the parameter set x typically consists of design variables
and y is the solution. Typically, m > n, and F is a square system w.r.t. y.

Now the inverse problem corresponding to this forward computation can be
phrased as follows. Given a target y, determine values for the parameters x such
that the forward computation yields a value close to the target y.

There are two popular ways of solving a (discretized) inverse problem. In
the case m = n, we can try to look for an exact match by solving the nonlinear
equation,

y(x)— 5 =0. ©)

Alternatively, when j is not in the range or when m > n, we look for a “close”
match by solving the nonlinear least squares problem,

min  |y(x) = yll2. (€)

where y(x) is implicitly defined by the forward process (1). Many inverse prob-
lems exhibit a time-stepping structure which can be exploited by applying the
EASE (Extended functions And Structure Exploitation) scheme of Coleman and
Verma [2, 1]. EASE provides an efficient way to compute the Newton step, and
other derivative-related information, by exploiting the structure of the problem at
hand. In the next section we briefly review EASE and its benefits.

2. Review of EASE

To illustrate the design of EASE, we consider the following very simple time-
stepping structured computation shown in Equation (4):

yi=T(yi-1),i=1,...,N. “4)
Based on (4), we want to solve the following boundary value problem :
Problemv: Estimate yo given the boundary condition yy = y finas
This problem can be viewed as the following non-linear equations problem :
F(yo) = yn(¥o) — Yfinat =0

The Jacobian J of F(yg), w.r.t. yg, is given by the product, J = Jy -
Jn-1---J1, where J; denotes the derivative of y; w.r.t y;—1, i.e., J; = T'(yi_1).
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Observation : Typically the Jacobians J;’s are sparse (e.g. due to local nature
of the “stencils” in finite difference schemes that define the function T in PDE
settings), but the overall Jacobian J might be completely dense! This means if we
try to compute the Jacobian matrix J ignoring the structure completely, the work
required will be equivalent to n function evaluations, where 7 is the size of the
problem, i.e., the size of vector y.

Here is how EASE can help: EASE highlights the inherent structure by using
the “extended” form shown in Figure 1.

1) “Solve” y1 — T(30) =0 (i.e., y1 := T (y0))
2) “Solve” y — T(y;) =0

N) “Solve” yv — T(yn-1) =0
Compute F := yy — Yfinal

Figure 1: Extended function form in EASE

The extended function in Figure 1 is not just a function of independent vari-
ables x = yp, but also depends on the intermediate variables yy, ... yy_i. The
second step of EASE is to differentiate the extended function w.r.t all its argu-
ments, i.€., yo, y1, ... YN-1, to get the extended Jacobian shown in Equation (5)

—-Ji I
—J I

—Jy I
Features of EASE

There are several benefits to using EASE.

e The extended Jacobian matrix Jg is often sparse, hence Jg can be computed
very efficiently using sparsity exploiting ideas [3].

e The Newton step s = —J —1F, can be directly computed from Jg via a
sparse solve as shown in Equation (6).

dx 0
8y1 0
| 2 = O ©

8yp —F
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o If the true Jacobian matrix J is required, it can be formed from Jg using
elementary linear algebra.

e If a solution of the Newton step is desired using conjugate gradients, the
product JV can be formed from Jg with out explicitly forming J. In some
cases this method might be more cost effective than the direct solve.

EASE can be extended to Hessian computations, and allows for efficient com-
putation of the Newton step (Ax = H ™!V f) and the true Hessian matrix from a
(sparse) extended Hessian matrix [1].

3. Heat Conductivity Inverse Problem

To illustrate the structured application of AD in a concrete way, we consider a
very simple inverse problem involving heat transfer. The problem is to find con-
ductivity properties of a 1-dimensional bar whose predicted temperature evolution
matches desired (or measured) behavior.

t

Final Temperature u(z,T)

t=T

P

u(0,0)=Ff(t) g

du/dz(1,t)=0
o
du/dz(0,t)=0

0 / \ 1 z
u(z,0) x(z)
given Unknown

Figure 2: 1-D inverse problem for the heat equation

The setup of the 1-D heat equation is shown in Figure 2. There is a thin bar
with ends at z = 0 and z = 1. The governing partial differential equation is
shown:

du ] ou 7
ar 0z Wa o

Function u(z, t) represents the temperature of the bar at position z and time
t. Function x(z) represents the unknown conductivity of the bar. We aim to de-
termine x(z), to closely match the measured behavior. Suppose that initial tem-
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perature distribution u(z, 0) is known and both ends of the bar are insulated while
the left end temperature is prescribed; the temperature over the bar is let to evolve
based on equation (7). The target (or measured) temperature distribution over the
bar ¢4 (2) is specified at time ¢ = T. Now we wish to solve for the conductiv-
ity function x(z) which results in a close match between the target temperature
®1ar(z) and the model temperature distribution ¢(z) = u(z, T). A related inverse
problem in heat transfer is described in Mukherjee et. al. [6]. The problem of
solving for x(z) is phrased as a least-squares problem:

minx(z)”¢tar(') —u(, T)ll2.

Computationally, this problem is solved using a discretization of spatial and
time domains, and employing a suitable finite difference method. For example we
can use the following discretization:

1
zj=((—-DAz,j=1:N,Az= -

N —
T
th =kAt,k=0: M, At = —
M
uﬁk)=u(Zj,Zk).

One suitable method for solving 1-D heat equation is the following:

LD

1
L =5 (D+ G@D-() + D- (x@) D+())) -
Here D.., D_ are the spatial difference operators. Expanding:
k k
ui +D =Cju§.k)+c]'+1u§k+)l +cj_1u§_)1 )]
where
cj = (A=3@xj4xjp+xj-1).  ¢ja1 = 5Gj4+x),  cjo1 = F(xj+xj-0).

Equation (8) holds for j = 2 : N — 1. For boundary cases j = 1, j = N, we use
boundary conditions along with the following approximations at the boundary.

XN+l = 2XN — XN-1 )

X0 = 2x1—x2 (10)

uf = fkar) (11)

”I;v+1 = 2k — (12)

Approximations made above are linear, e.g. xp := 2x] — x2 comes from x; =

x—"—%ﬁ. Hence we get special equations for j = land j = N :

A , A
uf TV = =20 + 20 +xpuf’ + fkADZ Gx —x2) (13)

w0 = (1= AGevor — )+ Ao — xnul) (14)
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where function f(¢) = u(0, t) is given. In the above formulation A = %.

Equations (8), (13) and (14) together can be written in a vector formzas
uFt = K (x)uk + B

where u* denotes the discretized temperature at time ¢ = kAt, i.e.,
uk = [ugk), e, uf{,c)], and

5 FkAD(Bx] — x2)

h* = 0
0
The matrix K (x) is a tridiagonal matrix of the form:
1—-2Ax; %(xl + x7)
51 +x2) 1- %20 +x3 +x1)) $(x3 +x)

K =
Aayog —xy) 1 — M-t —xN)
The inverse problem is typically solved by solving the nonlinear equation :
F(x) =uM(x) = ¢rar =0
3.1. Exploiting structure in computation

Define function u™ = G(x, u) = K (x)u + h. Applying EASE, the “structured”
computation of F(x) in 1-D heat equation can be written as shown in Figure 3.

Solve foru' : u! = G(x, u%)
Solve for u* : u? = G(x,u!)

Solve for u™ ;. uM = G(x,uM-1)
Compute F = uM — brar

Figure 3: Heat equation extended function

Differentiating, the extended Jacobian is given by:

Gx(x,u% -1
Gx(x,u') K(x) -I

JE — : . ..

Gy(x,uM-2 Kx) -=I

Gy(x, uM-1 K(x) —I
0 I
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Using the above formulation, we get all the benefits provided by EASE. In
particular, the Newton step Ax = —J ~1(uM (x) — ¢14r) can be computed very
cheaply.

3.2. Numerical results

Heat equation

,
€00 No structure exploitation e
.

Execution time
8
N

300 .

200 -7

- By exploiting structure

100

20 40 60 80 100 120 140 160 180 200
Size of the problem(n)

Figure 4: Numerical results for heat equation problem

The graph in Figure 4 shows the effectiveness of EASE compared to the un-
structured way of computing the Jacobian and Newton step. The size of the prob-
lem is N, the number of points in the discretization of spatial interval [0, 1]. It
is easy to show that the unstructured method is quadratic in the dimension of the
problem, but the EASE method is linear. Hence we can show an order of mag-
nitude improvement over the dense, unstructured method. In particular, we can
show that the unstructured method is O(MN?) in complexity, while the EASE
scheme is O (M N) in complexity. For the purpose of this experiment, the sparse
solve on the extended Jacobian matrix was done using the MATLAB’s backslash
(\) operator. ADMIT-2 software, which is described in Section 6, was employed.

4. Reflection Seismology Inverse Problem

Our second example involves the wave equation and a generic problem in seis-
mology. Reflection seismology inverse problems can be viewed as very large
nonlinear data-fitting problems, the desired solutions being the sound speeds of
earth’s subsurfaces and the data being the reflection seismograms collected at the
surface. In other words, we seek a model (or design) of earth which fits the data
(or target) in the least squares sense. For a description of a complex reflection
seismology inverse problem setting and more details on the nature of the problem,
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refer to Santosa and Symes [5]. In this paper, we consider a simplified setup of
the reflection seismology problem as shown in Figure 5.

f(t) given
(2,0=(0,0) / ‘

S

Pt

< _—=

M du/di=0

(]
= t=
[72]
gl
= u=0

aQ,

]
A

z=1
z

Figure 5: Reflection seismology problem

The problem can be described by the governing PDE (a wave equation) shown
below:

92u d du
Yo 52(95(2)52“). (15)

The boundary conditions are as follows:

u(z,0) = 0 (16)

du
5;(2,0) = 0 a7

u
x(0) - 5;(0, 1) = f(@. (18)

Here z denotes the depth co-ordinate, and x(z) relates directly to sound speeds at
depth z inside the earth. Function u(z, 1) represents the medium particle displace-
ment at depth coordinate z and time ¢. Function f (¢) denotes the excitation force,
in the form of traction applied at the surface (z = 0). We chose T sufficiently
small so that at time T, the disturbance has not reached z = 1, hence we need not
specify any boundary condition at z = 1.

Discretizing the time and the spatial domains, a suitable finite element method
is:

WP = ik L Ak + R
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2
where (A = 207y and

(Az)?
(an?
f(kAt) " TAZ
n* = 0
0

The vector u**! represents the displacement at times ¢ = kAt at discrete node
points z = j Az as in the heat equation example. The matrix A(x) is given by:

2 —A(xy +x2) A(xy +x2)
%(xl +x7) 2- %(xl + 2xp +x3) %(xz +x3)
Alx) =

AMxy—1+xy)  2—2(N-1 +xN)

The first iteration can be started by using the boundary condition u% =0, also
u~1 is assumed to be identically zero.

The measurements are made at earth’s surface (z = 0), i.e., the measured
data is the vector u!(0), u2(0), ...« (0), and can be represented by vector Z =
erelul + ezel u? + ...+ epel uM. We assume that M > N to avoid an under-
determined system for the solution of x.

If M = N, the inverse problem is solved by solving the nonlinear equation,
F(x) = Z(x) — Ztarger = 0,
but if M > N, we look for a solution which minimizes the error by solving the
following least squares problem,
miny  f(x) = 1Z(x) — Ziargetll2-

We shall discuss only the nonlinear equation setting in this section. For an
illustration of application of EASE for nonlinear least squares setting, please refer
to the Appendix.

5. Exploiting Structure in Computation

Define function ut = F(x,u,u”) = —u~ + A(x)u + h. Applying EASE, it is
seen that the extended function can be written as shown in Figure 6.
The extended Jacobian is given by:

Fe(x,u% u™h) —1
Fe(x,ul,u% Ax) -1
JE= N T T .
Fy(x, uM=2, yM-3) -1 A -1
Fe(x,uM-1 yM-2) -1 A -—I
0 elelT egelT €M€1T
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Solveforu1 cul = F(x,uo,u‘l)
Solve for u? : u? = F(x, u!, u®)

Solve foruM : yM = F(x,uM_l,uM“Z)
Final Z = elelTul + ezelru2 +...4+ eMeITuM = Ziarget

Figure 6: Wave equation extended function

Again, we get all the benefits provided by EASE. In particular, it is relatively
inexpensive to compute the Newton step Ax.

5.1. Numerical results

Wave equation

200

No structure exploitation

Execution time
8
\

a
S

so0f .- By exploiting structure

20 30 40 50 60 70 80 % 100
Size of the problem(n)

Figure 7: Numerical Results for the wave equation problem

The graph in Figure 7 shows the effectiveness of EASE compared to the un-
structured way of computing the Jacobian and Newton step. We get results very
similar to the heat conductivity problems results. The experiment was performed
employing the ADMIT-2 software which is described briefly in the next section.

6. ADMIT-2 Toolbox

As a part of project ADMIT (Automatic Differentiation and MATLAB Interface
Toolbox), we are currently developing two MATLAB toolboxes, ADMIT-1 and
ADMIT-2!. ADMIT-1 allows for efficient computation of sparse Jacobian/Hess-

lsee http://www.cs.cornell.edu/Info/People/verma/AD/research.html
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jan matrices using the ADOL-C tool [4] for Automatic differentiation. ADMIT-
2 builds on ADMIT-1, and provides efficient methods to compute the extended
derivative matrices and the Newton step implementing EASE. ADMIT-2 recog-
nizes different classes of real-world structured problems, such as inverse prob-
lems, partially separable problems, discrete-time optimal control problems etc. A
block-diagram of ADMIT-2 is shown in Figure 8.

ADOL-C

‘fun’ v
ADMIT-1 Extended J/H

‘ ADMIT-2 |———= Newton Step
(also J/H)

Structured Computation

Figure 8: Block Diagram of ADMIT-2 MATLAB toolbox

Sample Usage : ADMIT-2 has a very simple and easy-to-understand inter-
face. evalJExt is an ADMIT-2 function to compute the extended Jacobian and
the Newton step. The first argument of evalJExt is the class of the structured
computation, Gl in this case stands for generalized inverse problems.

>>

>>x=ones (100,1) ; <- the initial conductivity
>>initval=ones (100,1); <- the initial temperature
>>yfinal= 2*ones(100,1); <- the final (desired) temp. at t=1

>>fdata = MakeExtFdata(’GI’, 'heq’,initval,yfinal);
>>(f,ed,ns]l=evalJExt ('GI’, 'heq’,x, fdata);
>>

eJ denotes the extended Jacobian output, ns denotes the Newton step. The
“user-computation”, the time stepping procedure is assumed to be written in file
heg.m.

7. Conclusions

We have demonstrated the efficient application of automatic differentiation to in-
verse design problems. The basic idea is to recognize and use the dominant
program structure and then selectively apply AD. Preliminary numerical results
indicate that these ideas can lead to an order of magnitude improvement in the
computation of the Newton step.

In both the examples discussed in this paper the structure exploitation was
coarse-grained: the overall time stepping procedure defined the level of granular-
ity which we used to intertwine with the AD process. However, in some cases
in may be pragmatic to apply AD at a finer level of granularity, for example by
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exploiting the stencil update. We are currently developing a detailed example of
this sort.
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Appendix
A. Applying EASE in the Least Square’s Setting

We illustrate how to solve the Newton step in the nonlinear least squares setting,
using EASE. In particular, we’ll consider the reflection seismology inverse prob-
lem, but the ideas are applicable to inverse problem in general.

The problem has the form

ming f(x) = | Z(x) — zdesired ||

where Z = elelTu1 + ezelTu2 +...+ eMelTuM, and u! represents the state vector
at timestep i.
The gradient of this function w.r.t x is given by

Vf(x) = JT(Z(x) = 2desired)

where J is the Jacobian matrix of u™ w.r.t x. The gradient can be computed
using application of reverse mode of automatic differentiation. ADMIT-2 provides
a method to compute the gradient efficiently.

A.1. Gauss Newton step

The Gauss-Newton step is solved by
JTJs ==V () (19)

Equation (19) can be efficiently solved for, without forming J or J TJ ex-
plicitly, using the extended Jacobian matrix Jg. EASE tells us that the extended
function is as shown in Figure 9.

Solve for ul: ul = F(x,uo,u_l)
Solve for u?: u?=Fx,ul,u%

Solve for uM o yM = F(x, uM-1 uM"Z)
Final Z = ele{ul + eze{uz + ...+ eMe{uM — Zdesired

Figure 9: Wave equation extended function
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The extended Jacobian is given by :

Fe(x,u®,u™h —1I
Fe(x,ul, u® Ax) -1
JE — N . . .
Fy(x,uM=2 4yM-3) -1 A -I
Fx(x,uM_l,uM‘z) : -1 Ax) -I
0 elef eze{ eMe{

- (51

Then the Gauss-Newton step can be solved by solving system (20)

A L O 0 s 0
B M —-I 0 K 0
0o 0 MT LT || w |T 0 (20)
0 o BT AT v3 —Vfx)
It is easy to show that s solves J T Js = —V f(x). Hence to solve the Newton

step we solve the (sparse) extended system (20). Expectedly, it turns out that
system (20) can be made symmetric after permutations as shown in equation (21).

1 0 M B v 0
0 0 L A i | 0

MT LT 0 0 . 0 21
BT AT 0 o0 s =V fx)

A.2. Complete Newton step

For the complete Newton step, we also want to take into account the 2nd derivative
information, i.e., solve
Hs = -V f(x),

where H denotes the Hessian matrix. EASE allows us to do this efficiently, with-
out forming the true Hessian, using the extended Hessian formulation [1].



